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a b s t r a c t

Accurate prediction of pure compounds autoignition temperature (AIT) is of great importance. In this
study, the Artificial Neural Network-Group Contribution (ANN-GC) method is applied to evaluate the AIT
of pure compounds. 1025 pure compounds from various chemical families are investigated to propose
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a comprehensive and predictive model. The obtained results show the squared correlation coefficient of
0.984, root mean square error of 15.44 K, and average percent error of 1.6% for the experimental values.

© 2011 Elsevier B.V. All rights reserved.
ombustion

. Introduction

If the temperature of a flammable gas–air mixture is uniformly
aised, it eventually reaches to a value, at which combustion occurs.
or the range of flammable mixtures, there is a mixture composition
hich has the lowest ignition temperature. This minimum tem-
erature is called autoignition temperature (AIT) or spontaneous

gnition temperature (SIT). The AIT is defined as the lowest tem-
erature, at which a substance will produce hot-flame ignition in
ir at atmospheric pressure without the aid of an external energy
ource such as a spark or flame [1].

At the AIT, the rate of heat evolved by exothermic oxidation reac-
ion overbalances the rate at which heat is lost to the surroundings
nd causes ignition. The AIT is dependent not only on the chemical
nd physical properties of the substance but also on the method
nd instrument employed for its determination such as the vol-
me and the material of the used vessel, test pressure, and oxygen
oncentration [1].

Due to importance of the AIT of fuels, time-consuming, and
aborious processes of experimental determination of the AIT, the-
retical computation of the AIT is of great interest. There have
een several models so far presented for this purpose. For instance,

uzuki [2] developed some equations to estimate the AIT using a
umber of several molecular-based parameters and physical prop-
rties. The model showed average absolute deviation of 4.5% and
quared correlation coefficient of 0.9. The correlation was devel-
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oped using a dataset for 250 chemical compounds. Furthermore,
the correlation was unable to estimate the AIT of 23 compounds
with enough accuracy. In the case that these compounds are added
to the calculations, the squared correlation coefficient decreases
to 0.85 and the average absolute deviation increased to 5.4%.
Another attempt has been done by Tetteh et al. [3], who tried to
modify the Suzuki’s correlation by presenting an Artificial Neu-
ral Network instead of the correlation. Therefore, they used the
parameters previously applied by Suzuki as the inputs of their
models. They reported the error of 30 ◦C using the same correla-
tion used by Suzuki. Mitchel and Jurs [4] developed quantitative
structure–property relationship (QSPR) for estimation of the AIT.
They applied a dataset including 327 heterogeneous organic com-
pounds to develop their model. Moreover, they stated that their
attempt to model all the compounds together was unsuccessful.
Hence, these researchers presented several models each of them
appropriate for calculation of the AIT of a portion of the compounds
in the dataset. Another QSPR approach was developed by Kim et al.
[5] using a dataset including 200 compounds. Their model showed
that the square of the correlation coefficient (R2) for the AIT of
the 157-member training set was 0.920, and the root mean square
error was 25.876. The squared correlation coefficient and root mean
square error of their model for a 43-member prediction set were
0.910 and 28.968, respectively. Albahri and George [6] and Albahri
[7] presented two very similar models for estimation of AIT. It seems
the first one was a bit better. The model showed squared correla-

tion coefficient of 0.98 and average error of 2.8% over a data set
including 490 compounds.

Recently, some other models have been presented for estima-
tion of AIT property. It seems that these models are not more
general and accurate than the model presented by Albahri and

dx.doi.org/10.1016/j.jhazmat.2011.02.014
http://www.sciencedirect.com/science/journal/03043894
http://www.elsevier.com/locate/jhazmat
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eorge [6]. For instance, we can refer to the two models proposed
y Pan et al. [8,9,10]. For the first one, they used a small data
et including 192 compounds to develop a QSPR-based support
ector machine type method. Although the square correlation coef-
cient of the model obtained was 0.984, the considerable difference
etween the leave-one-out parameter and squared correlation
arameter showed its poor predictive power (QLOO). Later, they
resented an Artificial Neural Network-Group Contribution model
sing a dataset including 116 hydrocarbons. The average abso-

ute error and root mean square error of the model were 21.6 ◦C
nd 31.1, respectively. Finally, using a data set containing 446
rganic compounds, Pan et al. [10] developed a QSPR-based sup-
ort vector machine type mode to estimate the AIT. The squared
orrelation coefficient and root mean square of the model were 0.9
nd 36.86 ◦C. A recent model presented by Chen et al. [11]. They
sed the classic group contribution method to calculate the AIT.
he squared correlation coefficient of the model was 0.85.

One of the main problems that have been mentioned in majority
f the presented models is that the AIT values are hard to be corre-
ated with chemical structure of compounds. This issue can be easily
nferred from the low accuracy of the previously presented mod-
ls. Another issue is related to the number of compounds that have
een used in developing the previous models. Even though, there
re experimental data for much more than 500 compounds avail-
ble in the literature, but none of the aforementioned researchers
pplied such wide ranges of data for developing their models.

The main aim of this study is to present a new comprehen-
ive model for calculation/estimation of AIT using a large dataset
ontaining more than 1000 compounds.

. Procedure

.1. Data set preparation

DIPPR 801 [12] database has been found especial applications
n developing new methods for prediction of physical properties
ecause it contains a large number of pure compounds as well as
heir physical properties. In order to provide a data set for calcula-
ion of the AIT, 1025 pure compounds from 78 different chemical
roups were investigated and their related AITs were considered
or the study. These compounds are presented as supplementary

aterial.

.2. Development of a new group contribution

Having defined the dataset, the chemical structures of all 1025
ompounds were analyzed. Consequently, 146 functional groups
ere found to be more efficient for calculation/estimation of the
IT of pure compounds. The functional groups used in this study
re presented in Table 1 . Besides, their numbers of occurrences in
ure compounds used in this work are also extensively presented
s supplementary materials. These chemical groups are used as the
roposed method parameters.

The next calculation step and perhaps the most significant one is
o search for a relationship between the chemical functional groups
nd the AIT of chemical compounds. The simplest method for this
urpose is assumption of existence of a multi-linear relationship
etween these groups and the desired property (here is the AIT
f pure compounds) [13–14]. This technique is a similar method

sed in the most of classical group contribution methods. Several
alculations show that application of the mentioned methodology
or the current problem brings about poor results. Consequently,
onlinear mathematical method of Artificial Neural Network (ANN)

s investigated.
Materials 189 (2011) 211–221

Artificial Neural Networks are extensively used in various
scientific and engineering problems [13–41] e.g. estimations of
physical and chemical properties of different pure compounds
[28–41]. These capable mathematical tools are generally applied
to study the complicated systems [13–41]. The theoretical expla-
nations about Neural Networks can be found elsewhere [42].
Using the Neural Network toolbox of the MATLAB software
(Mathworks® Inc.), a three layer Feed Forward Artificial Neural
Network (FFANN) is developed for the problem. The capabilities of
this kind of ANNs have been demonstrated in the previous works
[13–15,28–41].

All the 146 functional groups and also the AIT values of pure
compounds are normalized between −1 and +1 to decrease com-
putational errors. This can be performed using maximum and
minimum values of each functional group for input data and using
maximum and minimum values of AITs for output parameters.
Later, the main dataset is divided into three new sub-datasets
including the “training” set, the “validation (optimization)” set,
and the “test (prediction)” set. In this work, the “training” set is
used to generate the ANN structure, the “validation (optimization)”
set is applied for optimization of the model, and the “test (pre-
diction)” set is used to investigate the prediction capability and
validity of the obtained model. The process of division of main
dataset into three sub-datasets is performed randomly. For this
purpose, about 80%, 10%, and 10% of the main dataset are randomly
selected for the “training” set (821 compounds), the “validation” set
(102 compounds), and the “test” set (102 compounds). The effect
of the allocation percent of the three sub-datasets from the data
of main dataset on the accuracy of the ANN model has been stud-
ied elsewhere [43]. The typical structure of a three layer FFANN is
schematically presented in Fig. 1.

This type of ANN contains three layers; the input layer, the
hidden layer, and the output layer. It consists of n neurons. The
parameter n is one of the main parameters of the FFANN and
should be obtained by post-optimization after generating the base-
structure of the FFNN. The mathematic formulation of this strategy
can be written as follows:

output(i) = W2 × tanh(W1 × input(i) + b1) + b2 (1)

where i refers to the data point, the parameter W1 is the weight
relating the first layer to the second layer, W2 is the weight relating
the second to the third or output layer, b1 denotes the bias to the
second layer, and b2 stands for the bias of third or output layer. W1,
W2, b1, and b2 should be determined by a process called “training”.

Generally, to generate a FFNN, there is a need to know some
parameters of the proposed problem. The required parameters
are the number of inputs (nip), number of outputs (nop), and the
number of objects (nobj) i.e. number of data points with known
input parameter (ip) and corresponding output parameter (op). For
instance, in the problem in this study with 146 input parameters
(functional groups) and one output parameter (the AIT) with 821
data points (the training set compounds), the nip, nop, and nobj are
146, 1, and 821, respectively.

As a matter of fact, generating an ANN model is determination
of the weight matrices and bias vectors [42]. As shown in Fig. 1,
there are two weight matrices and two bias vectors in a three
layer FFANN: W1 and W2, b1 and b2 [13–42]. These parameters
should be obtained by minimization of an objective function. The
objective function used in this study is sum of squares of errors
between the outputs of the ANN (predicted AITs) and the target
values (experimental AIT values). This minimization is performed

by Levenberg–Marquardt (LM) [42] optimization strategy. There
are also more accurate optimization methods other than this algo-
rithm; however, they need much more convergence time. In other
words, the more accurate optimization, the more time is needed
for the algorithm to converge to the global optimum. The LM
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Table 1
Functional groups used to develop the model.

No. Functional groups Comments

1 AIT001 Terminal primary C(sp3) Y = any
terminal atom or heteroaromatic
group (i.e. H, X, OH, NH2, etc.)

2 AIT002 Total secondary C(sp3) Y = H or any
heteroatom

3 AIT003 Total tertiary C(sp3) Y = H or any
heteroatom

4 AIT004 Total quaternary C(sp3)

5 AIT005 Ring secondary C(sp3) Y = H or any
heteroatom

6 AIT006 Ring tertiary C(sp3) Y = H or any
heteroatom

7 AIT007 Ring quaternary C(sp3)

8 AIT008 Sum of all the carbons belonging to any
aromatic and heteroaromatic structure

Aromatic C(sp2)

9 AIT009 Unsubstituted benzene C(sp2)

10 AIT010 Substituted benzene C(sp2) Y = carbon
or any heteroatom

11 AIT011 Non-aromatic conjugated C(sp2)

12 AIT012 Terminal primary C(sp2) Y = any
terminal atom or heteroaromatic
group (i.e. H, X, OH, NH2, etc.)
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Table 1 (Continued)

No. Functional groups Comments

13 AIT013 Aliphatic secondary C(sp2) Y = H or any
heteroatom

14 AIT014 Aliphatic tertiary C(sp2)

15 AIT015 Terminal C(sp) Y = any terminal atom
or heteroaromatic group (i.e. H, X, OH,
NH2, etc.)

16 AIT016 Non-terminal C(sp) Y = C or any
non-terminal heteroatom

17 AIT017 Isocyanates (aliphatic)

18 AIT018 Isocyanates (aromatic)

19 AIT019 Carboxylic acids (aliphatic)

20 AIT020 Carboxylic acids (aromatic)

21 AIT021 Esters (aliphatic) Y = Ar or Al (not H)
Al = H or aliphatic group linked through
C

22 AIT022 Esters (aromatic) Y = Al or Ar

23 AIT023 Primary amides (aliphatic) Al = H or
aliphatic group linked through C

24 AIT024 Secondary amides (aliphatic) Y = Ar or
Al (not H, not C O) Al = H or aliphatic
group linked through C

25 AIT025 Tertiary amides (aliphatic) Y = Ar or Al
(not H, not C O) Al = H or aliphatic
group linked through C

26 AIT026 Acyl halogenides (aliphatic)

27 AIT027 Aldehydes (aromatic)

28 AIT028 Ketones (aliphatic)

29 AIT029 Carbonate (-thio) derivatives (Y = O or
S)
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Table 1 (Continued)

No. Functional groups Comments

30 AIT030 Primary amines (aliphatic)
Al = aliphatic group linked through C
(not C O)

31 AIT031 Primary amines (aromatic)

32 AIT032 Secondary amines (aliphatic)
Al = aliphatic group linked through C
(not C O)

33 AIT033 Secondary amines (aromatic) Y = Ar or
Al (not C O)

34 AIT034 Tertiary amines (aliphatic)
Al = aliphatic group linked through C
(not C O)

35 AIT035 Tertiary amines (aromatic) Y = Ar or Al
(not C O)

36 AIT036 N Hydrazines Y = C or H

37 AIT037 Nitriles (aliphatic)

38 AIT038 Positive charged N

39 AIT039 Nitro groups (aliphatic) Al = H or
aliphatic group linked through carbon

40 AIT040 Nitro groups (aromatic) Al = aromatic
group linked through carbon

41 AIT041 Hydroxyl groups Al = aliphatic group
linked through any atom

42 AIT042 Aromatic hydroxyls Ar = aromatic
group linked through any atom

43 AIT043 Primary alcohols

44 AIT044 Secondary alcohols
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Table 1 (Continued)

No. Functional groups Comments

45 AIT045 Tertiary alcohols

46 AIT046 Ethers (aliphatic) Al = aliphatic group
linked through C (not C O, not C#N)

47 AIT047 Ethers (aromatic) Y = Ar or Al (not C O,
not C#N)

48 AIT048 Anhydrides (thio-) Y = O or S

49 AIT049 Thiols

50 AIT050 Sulfides

51 AIT051 Disulfides

52 AIT052 Sulfates (thio-/dithio-) (Y = O or S)

53 AIT053 Phosphates/thiophosphates (Y = O or S)

54 AIT054 CH2RX

55 AIT055 CHR2X

56 AIT056 R CHX

57 AIT057 R CRX

58 AIT058 CHRX2

59 AIT059 CR2X2

60 AIT060 CRX3
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Table 1 (Continued)

No. Functional groups Comments

61 AIT061 X on aromatic ring

62 AIT062 X on exo-conjugated C

63 AIT063 Aziridines

64 AIT064 Oxiranes

65 AIT065 Thiranes

66 AIT066 Furanes

67 AIT067 Thiophenes

68 AIT068 Pyridines

69 AIT069 Sum of the hydrogens linked to all of the Os
and Ns in the molecul

Donor atoms for H-bonds (N and O)

70 AIT070 Total Ns, Os and Fs in the molecule, excluding
N with a formal positive charge, higher
oxidation states and pyrrolyl form of N

Acceptor atoms for H-bonds (N, O, F)

71 AIT071 CH3R/CH4

72 AIT072 CH2R2

73 AIT073 CHR3

74 AIT074 CR4

75 AIT075 CH3X
76 AIT076 CH2RX
77 AIT077 CH2X2

78 AIT078 CHR2X
79 AIT079 CHRX2

80 AIT080 CHX3

81 AIT081 CR3X
82 AIT082 CRX3

83 AIT083 CH2

84 AIT084 CHR
85 AIT085 CR2

86 AIT086 CHX
87 AIT087 CRX
88 AIT088 CX2

89 AIT089 #CH
90 AIT090 #CR/R C R
91 AIT091 R–CH–R
92 AIT092 R–CR–R
93 AIT093 R–CX–R
94 AIT094 R–CH–X
95 AIT095 R–CR–X
96 AIT096 R–CH. .X
97 AIT097 R–CR. .X
98 AIT098 Al–CH X
99 AIT099 Ar–CH X
100 AIT100 Al–C( X)–Al
101 AIT101 R–C( X)–X/R–C#X/X C X
102 AIT102 X–C( X)–X
103 AIT103 Ha attached to C0(sp3) no X attached to next C
104 AIT104 Ha attached to C1(sp3)/C0(sp2)
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Table 1 (Continued)

No. Functional groups Comments

105 AIT105 Ha attached to C2(sp3)/C1(sp2)/C0(sp)
106 AIT106 Ha attached to C3(sp3)/C2(sp2)/C3(sp2)/C3(sp)
107 AIT107 H attached to heteroatom
108 AIT108 H attached to alpha-Cb

109 AIT109 Ha attached to C0(sp3) with 1X attached to
next C

110 AIT110 Ha attached to C0(sp3) with 2X attached to
next C

111 AIT111 Ha attached to C0(sp3) with 3X attached to
next C

112 AIT112 alcohol
113 AIT113 phenol/enol/carboxyl OH
114 AIT114 O
115 AIT115 Al–O–Al
116 AIT116 Al–O–Ar/Ar–O–Ar/R. .O. .R/R–O–C X
117 AIT117 O–c

118 AIT118 R–O–O–R
119 AIT119 Al–NH2

120 AIT120 Al2–NH
121 AIT121 Al3–N
122 AIT122 Ar–NH2/X–NH2

123 AIT123 Ar–NH–Al
124 AIT124 Ar–NAl2
125 AIT125 RCO–N</>N–X X
126 AIT126 Ar2NH/Ar3 N/Ar2N–Al/R. .N. .Rc

127 AIT127 R#N/R N–
128 AIT128 R–N–Rd/R–N–X
129 AIT129 Ar–NO2/R–N(–R)–Oe/RO–NO
130 AIT130 Al–NO2

131 AIT131 Fa attached to C3(sp3)
132 AIT132 Fa attached to

C2(sp2)-C4(sp2)/C1(sp)/C4(sp3)/X
133 AIT133 Cla attached to C1(sp3)
134 AIT134 Cla attached to C2(sp3)
135 AIT135 Cla attached to C3(sp3)
136 AIT136 Cla attached to C1(sp2)
137 AIT137 Cla attached to

C2(sp2)-C4(sp2)/C1(sp)/C4(sp3)/X
138 AIT138 Bra attached to C1(sp3)
139 AIT139 Bra attached to C1(sp2)
140 AIT140 Ia attached to C1(sp3)
141 AIT141 R–SH
142 AIT142 R2S/RS–SR
143 AIT143 R S
144 AIT144 R–SO2–R
145 AIT145 >Si<
146 AIT146 X3–P X (phosphate)

Explanations: R represents any group linked through carbon; X represents any electronegative atom (O, N, S, P, Se, halogens); Al and Ar represent aliphatic and aromatic
groups, respectively; represents a double bond; # represents a triple bond; – represents an aromatic bond as in benzene or delocalized bonds such as the N–O bond in a
nitro group;. . represents aromatic single bonds as the C–N bond in pyrrole.

a The superscript represents the formal oxidation number. The formal oxidation number of a carbon atom equals the sum of the conventional bond orders with electroneg-
ative atoms; the C–N bond order in pyridine may be considered as 2 while we have one such bond and 1.5 when we have two such bonds; the C. .X bond order in pyrrole or
furan may be considered as 1.

#X, –

[
r
[

fi
a
i
t
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o
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o

b An alpha-C may be defined as a C attached through a single bond with –C X, –C
c Pyrrole-type structure.
d Pyridine-type structure.
e Pyridine N-oxide type structure.

41–43] is most-widely used algorithm for training due to being
obust and accurate enough to deal with the considered system
13–41].

In most cases, the number of neurons in the hidden layer (n) is
xed. Therefore, the main goal is to produce a ANN model, which is
ble to predict the target values as accurately as expected. This step
s repeated till the best ANN is obtained. Generally and especially in
hree-layer FFANNs, it is more efficient that the number of neurons
n the hidden layer is optimized according to the accuracy of the
btained FFANN [13–43].
. Results and discussion

An optimized Feed Forward Artificial Neural Network has been
btained using the aforementioned procedure for prediction of the
C–X.

AIT of 1025 pure compounds. For this purpose, several 3FFANNs
modules have been generated assuming numbers 1 through 50
for n (number of neurons in hidden layer) using the previously
described procedure. The most accurate results, without overfit-
ting are observed for n = 10. It should be noted that this value is not
the global value, because the optimization method used to train the
ANN has great effects on the obtained value [28,42]. Therefore, the
developed three-layer FFANN has the structure of 146-10-1.

The mat file (MATLAB® file format) of the obtained Artificial
Neural Network containing all the parameters of the model and

the instruction for running the program are freely available upon
request to the authors. The predicted AITs are shown in Fig. 2 in
comparison with the experimental values [12].

The statistical parameters of the model are presented in Table 2.
These results show that the squared correlation coefficient, average
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Input Hidden Layer Output Layer

f2Input

W1

b1

W2

b 2

Output

Fig. 1. The schematic structure of the three-layer Feed Forward Artificial Neural
Network used in this study.
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Table 3
The average absolute percent errors of the model for all of the investigated chemical
families.

ID Family AAD%

1 1-Alkenes 2.90
2 2,3,4-Alkenes 3.39
3 Acetates 1.75
4 Aldehydes 1.61
5 Aliphatic ethers 2.77
6 Alkylcyclohexanes 1.81
7 Alkylcyclopentanes 4.15
8 Alkynes 0.35
9 Anhydrides 0.43
10 Aromatic alcohols 1.41
11 Aromatic amines 0.39
12 Aromatic carboxylic acids 0.22
13 Aromatic chlorides 0.17
14 Aromatic esters 1.54
15 C, H, BR compounds 0.34
16 C, H, F compounds 0.19
17 C, H, I compounds 0.36
18 C, H, multihalogen compounds 0.07
19 C, H, NO2 compounds 2.38
20 C1/C2 aliphatic chlorides 0.33
21 C3 & higher aliphatic chlorides 0.95
22 Cycloaliphatic alcohols 0.47
23 Cycloalkanes 5.38
24 Cycloalkenes 2.47
25 Dialkenes 1.24
26 Dicarboxylic acids 0.62
27 Dimethylalkanes 2.31
28 Diphenyl/polyaromatics 1.84
29 Epoxides 0.78
30 Ethyl & higher alkenes 2.99
31 Formates 3.68
32 Inorganic bases 0.38
33 Inorganic gases 0.63
34 Isocyanates/diisocyanates 0.23
35 Ketones 2.11
36 Mercaptans 0.27
37 Methylalkanes 2.21
38 Methylalkenes 2.62
39 Multiring cycloalkanes 0.97
40 N-Alcohols 1.26
41 N-Aliphatic acids 1.58
42 N-Aliphatic primary amines 1.41
AIT (K) (exp)

ig. 2. Comparison between the calculated/estimated results of the model and
xperimental values12 of the AIT of the investigated pure chemical compounds.

ercent error, and root mean square error of the model over the
raining set, the validation set, the test set and the main data set
re 0.984, 0.980, 0.986, 0.984, 1.6%, 1.6%, 1.6%, 1.6%, 15.4, 16.25,
4.99, 15.44 K, respectively.

The average percent errors of the model for the investigated

hemical families of pure compounds are shown in Table 3. It was
ound from the results that the model can accurately predict the
IT of different classes of pure compounds. Based on the results,

he maximum percent error is related to the diethyl ether which is

able 2
tatistical parameters of the presented models.

Statistical parameter Value

Training set
R2 0.984
Average percent error 1.60%
Standard deviation 119.11
Root mean square error 15.4
n 821

Validation set
R2 0.980
Average percent error 1.60%
Standard deviation 110.8
Root mean square error 16.25
n 102

Test set
R2 0.986
Average percent error 1.60%
Standard deviation 125.38
Root mean square error 14.99

n 102
Training + validation + test set

R2 0.984
Average percent error 1.60%
Standard deviation 118.95
Root mean square error 15.44
n 1025

43 N-Alkanes 2.13
44 N-Alkylbenzenes 2.82
45 Naphthalenes 2.24
46 Nitriles 1.03
47 Nitroamines 3.04
48 Organic salts 0.24
49 Organic/inorganic compounds 5.00
50 Other aliphatic acids 1.34
51 Other aliphatic alcohols 1.98
52 Other aliphatic amines 1.20
53 Other alkanes 2.48
54 Other alkylbenzenes 3.32
55 Other amines, imines 0.77
56 Other condensed rings 0.55
57 Other ethers/diethers 1.49
58 Other hydrocarbon rings 0.82
59 Other inorganics 0.06
60 Other monoaromatics 2.26
61 Other polyfunctional C, H, O 2.10
62 Other polyfunctional organics 0.10
63 Other saturated aliphatic esters 1.16
64 Peroxides 0.30
65 Polyfunctional acids 0.38
66 Polyfunctional amides/amines 0.52
67 Polyfunctional C, H, N, halide, (O) 0.22
68 Polyfunctional C, H, O, halide 0.57
69 Polyfunctional C, H, O, N 0.31
70 Polyfunctional C, H, O, S 0.47
71 Polyfunctional esters 1.58
72 Polyfunctional nitriles 0.11
73 Polyols 1.99
74 Propionates and butyrates 1.93
75 Silanes/siloxanes 1.58
76 Sulfides/thiophenes 0.55
77 Terpenes 1.87
78 Unsaturated aliphatic esters 0.80
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ig. 3. The absolute percent error ranges of the model over all of the investigated
ompounds.

2.5%. According to the DIPPR 801, the uncertainties of the exper-
mental AIT values reported for the diethyl ether have not been
eported in the original source, so it is probable that this value
s not as accurate as other compounds reported values. Addition-
lly, it is the only compound that the corresponding value of AIT is
redicted with more than 11% deviation from experimental value.
he quality of the model is better understood using a chart as in
ig. 3 that shows the average percent error ranges. As can be easily
een, more than half of the main dataset, which is larger than the
ost comprehensive dataset that have ever been used in previous

tudies [6], is predicted with lower than 1% deviation from experi-
ental value. This accomplishment confirms the capabilities of the
odel.

. Conclusion

A group contribution-based model was presented for predic-
ion of the autoignition temperature (AIT) of pure compounds. The

odel is the result of a combination of group contributions and Feed
orward Artificial Neural Networks. The parameters of the model
re the numbers of occurrences of 146 functional groups in each
nvestigated molecule. It should be noted that majority of these
46 functional groups are not simultaneously available in a par-
icular molecule, so computation of these functional parameters
rom chemical structure of any molecule is simple. For develop-
ng the model, a large data set involving 1025 pure compounds

ere used. Consequently, this model can be used to predict the
IT of every regular compound but with some limitations. The
odel has a wide range of applicability but the prediction capa-

ility of the model is restricted to the compounds, which are
imilar to those ones applied to develop the model. Application
f the model for the totally different compounds than the inves-
igated ones is not recommended although it may be used for
rough estimation of the molecular diffusivity of these kinds of

ompounds.
Finally, the average absolute deviation of the model results from

xperimental values12 demonstrates the accuracy of the presented
odel.
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Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.jhazmat.2011.02.014.
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